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We study the screening of the Coulomb interaction in a quasi-one-dimensional superconductor by the
presence of either a one- or a two-dimensional electron gas nearby. To that end, we derive an effective
low-energy phase-only action, which amounts to treating the Coulomb and superconducting correlations in the
random-phase approximation. We concentrate on the study of dissipation effects in the superconductor, induced
by the effect of Coulomb coupling to the diffusive modes in the electron gas, and study its consequences on the
behavior of the one-dimensional plasma mode, and the static and dynamical conductivity. Our results point
toward the importance of the dimensionality of the screening metal in the behavior of the superconducting
plasma mode of the wire at low energies. In absence of topological defects, and when the screening is given by
a one-dimensional electron gas, the superconducting plasma mode is completely damped in the limit k→0, and
consequently superconductivity is lost in the wire. In contrast, we recover a Drude-type response in the
conductivity when the screening is provided by a two-dimensional electron gas.
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I. INTRODUCTION

The environment has profound effects on the properties of
quantum systems.1 In the case of superconductors, it was
predicted more than 25 years ago that a resistively shunted
Josephson junction would experience a superconductor-
normal transition as a function of RS /RQ, where RS is the
shunt resistance of the junction and RQ=h /4e2�6.45 k� is
the quantum of resistance.2–4 More recently, a variety of su-
perconducting systems, including granular,5 or
homogeneous6 films, two-dimensional �2D� Josephson junc-
tions arrays,7 out-of-equilibrium Josephson junctions,8 and
high-temperature superconductors9 were shown to undergo a
superconductor-insulator transition as the characteristic resis-
tance of the system in the normal state increases through a
critical value on the order of RQ. In those cases, the dissipa-
tive environment corresponds to the measurement circuits or
the intrinsic component of normal electrons in the system.

In contrast, isolated superconducting wires with lateral
dimension r0��0, where �0 is the bulk coherence length, do
not present significant dissipation sources at low tempera-
tures. The low-energy modes in an ideally isolated supercon-
ducting wire are the one-dimensional �1D� propagating
plasma modes along the axis.10 Contrary to bulk supercon-
ductors, where the plasmon has an energy �p

3D=�4�nse
2 /m

�where ns is the superfluid density and m is the electron
mass�, in the restricted 1D geometry of the wire, the long-
ranged Coulomb interaction is not completely screened and
consequently charge fluctuations are not shifted to finite en-
ergies in the limit k→0. The result is a soundlike dispersion
relation �2�k��k2 ln�1 /kr0�, where the logarithmic factor is
a remnant of the long-range interaction. Because of the gap-
less dispersion relation, quantum fluctuations are expected to
show critical behavior,11 a feature that has attracted the at-
tention of several theoretical12–15 and experimental16–18 re-
search groups.

How this picture �i.e., soundlike dispersion relation and
critical behavior� is modified when the coupling to the elec-
tromagnetic environment is taken into account? Intuitively,

the presence of a metal at a distance d should screen the
Coulomb interaction for density fluctuations with wave-
length k�d−1, resulting in enhanced superconducting
correlations.11 On the other hand, in capacitively coupled
superconductor-normal systems, the presence of dissipation
in the normal metal �e.g., presence of impurities� is known to
produce dissipative order-parameter fluctuations19–22 and,
from this point of view, screening might also be accompa-
nied by detrimental effects to superconductivity. Indeed, re-
cent theoretical works on related Luttinger-liquid systems
coupled electrostatically to metals predict charge-density
wave and other instabilities caused by the dissipative envi-
ronment, which destroy the superconducting state.23,24

Therefore, a better understanding of the screening effects
occurring in superconducting wires and the consequences to
their superconducting properties is needed. This issue is par-
ticularly relevant to recent theoretical13,25,26 and
experimental27,28 works showing evidence of stabilization of
superconductivity in low-dimensional systems due to the
presence of tunneling contacts with normal metallic leads,
which suppress fluctuations of the superconducting order pa-
rameter. It would be desirable to investigate to what extent
the same leads introduce additional sources of dissipation
prejudicial to superconductivity.

SC wire
2r

0

N wire

x

d

SC wire
2r

0

N film
d

(b)

(a)

FIG. 1. Representation of the capacitively coupled
superconducting-wire-normal-metal system. The metal placed at a
distance d screens the long-range Coulomb interaction in the super-
conducting wire. In �a� the metal is a diffusive wire and in �b� we
consider a diffusive 2D electron gas.
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In this paper we study the effects of the screening of the
Coulomb interaction in a quasi-1D superconductor by the
presence of a metal nearby �cf. Fig. 1�. To that end, we
derive an effective model �i.e., phase-only action� of the
coupled system valid at low energies, which amounts to per-
forming the so-called random-phase approximation �RPA� of
the interacting problem.

We specify two experimentally relevant geometries,
namely: �a� a 1D and �b� a 2D electron gas �1DEG and
2DEG, respectively� in the diffusive limit. Our results show
a rich behavior of the 1D plasma mode in the wire due to
screening and dissipative effects, and point toward the im-
portance of the dimensionality of the screening metal. In
particular, in the case of screening provided by a 1DEG,
important frictional effects are observed in the supercon-
ductor due to the capacitive coupling. In that case, due to
their slow diffusive motion, electrons in the 1DEG are un-
able to screen out the faster density fluctuations associated
with the 1D plasmon,19 and in the limit k→0 and T→0
phase coherence is destroyed and the wire shows a finite
residual resistivity. In contrast, for a wire coupled to a
2DEG, screening is more efficient due to the additional
transverse degree of freedom in the plane. As a consequence,
dissipation vanishes in the limit k→0, and the wire is well
described by the Luttinger-liquid picture.

The paper is divided as follows: in Sec. II we derive a
general effective phase-only action for the coupled
superconductor-normal system and derive the equation of
motion for the 1D plasma mode, in Sec. III we present a
detailed analysis of the screening regimes at low energies for
both the 1D and 2D geometries, Sec. IV is devoted to the
study of the dissipative effects in the dynamical conductivity
��k ,�� of the wire, and finally in Sec. V we summarize our
findings and present a discussion. The details of the deriva-
tion of the low-energy effective action are given in Appen-
dices A and B.

II. MODEL

In this section we derive a general effective model which
describes a clean superconducting wire of length L capaci-
tively coupled to a diffusive metal, and present a general
formalism to obtain the dispersion relation of the 1D plas-
mon. The derivation of the model is standard12,21,29,30 and
here we only sketch the main steps. We refer the reader to
Appendix A and to the aforementioned references for details.

In the following we use the convention �=kB=1. We be-
gin our description with the microscopic action of the com-
plete system depicted in Fig. 1,

S = �
0

	

d
�
a,�
� dr�a,�

� ��
 − �a��a,� + �
0

	

d
H , �1�

where 	= 1
T . The Grassmann field �a,���a,��r ,
� describes

an electron in the superconductor for a=s �normal metal for
a=n� with spin projection � at position r��x ,y ,z� and
imaginary time 
. The chemical potential �a=kF,a

2 /2m is the
Fermi energy in the normal state with kF,a the Fermi wave
vector. The Hamiltonian H of the systems is

H = Hs
0 + Hn

0 + Hint, �2�

where

Hs
0 =� dr�

�

	��s,�
† 
	��s,�


2m
+ U�s↑

† �s↓
† �s↓�s↑, �3�

describes a translationally invariant, clean superconductor.
Since we will not focus on the details of the pairing mecha-
nism, here we assume a phenomenological local attractive
interaction U0 which is responsible for �s-wave� pairing at
TTc.

The normal metal is described by

Hn
0 =� dr�

�
� 	��n,�

† 
	��n,�

2m

+ �n,�
† Vi�n,�� , �4�

where Vi�Vi�r� represents the weak static impurity potential
which provides a finite resistivity in the metal.

Finally, the interaction term is

Hint =
1

2
� dr1dr2�̂s�r1�v�r1 − r2,0��̂s�r2�

+
1

2
� dr1dr2�̂n�r1�v�r1 − r2,0��̂n�r2�

+� dr1dr2�̂s�r1�v�r1 − r2,d��̂n�r2� , �5�

where we defined the electronic density operators �̂a�r�
����a,�

† �r��a,��r�, and where the domain of integration of
the variables r1 and r2 is constrained to the volume of the
superconductor �for a=s� and the metal �for a=n�. The par-
ticular geometry of the system �cf. Fig. 1� allows us to write
the microscopic long-range Coulomb interaction potential as

v�r1 − r2,d� =
1

�r

e2

�r1 − r2xy
2 + d2

, �6�

where r1−r2xy and d are the distances between coordinates
r1 and r2 in the xy plane and along the z axis, respectively,
and �r is the dielectric constant of the insulating medium
between the metal and the superconductor.

The first step in the derivation of an effective low-energy
model consists in decoupling the interaction terms appearing
in Hs

0 and Hint by the means of suitable Hubbard-
Stratonovich transformations �HSTs�. The repulsive Cou-
lomb interaction Hint is more conveniently decoupled by ex-
pressing it in terms of the symmetric and antisymmetric
density operators �cf. Appendix A�,

�̂��r� � �̂s�r� � �̂n�r� . �7�

With this definition, the interaction term 	cf. Eq. �5�
 com-
pactly writes

Hint =
1

2 �
�=�

� dr1dr2�̂��r1�v��r1 − r2��̂��r2� , �8�

where
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v��r� �
v�r,0� + ���v�r,d�

2
�with � = �� . �9�

The HS transformations to decouple the Coulomb and the
Hubbard U0 interactions are implemented by introducing
the HS fields �̃��r ,
� in the particle-hole channel, and
�*�r ,
� , ��r ,
� in the particle-particle channel, respec-
tively �cf. Appendix A�.

The next step in our derivation is to introduce an extra HS
field ���r ,
� in order to decouple the quadratic term in
�̃��r ,
�, appearing in Eq. �A1�. Then, it is easy to show that
the field �̃��r ,
� can be formally integrated out, yielding a
functional-delta function31 �	�̂��r ,
�−���r ,
�
. As noted by
De Palo et al.,21 this fact allows to interpret the new HS
fields ���r ,
� as the physical density of the problem, ex-
pressed in our case in terms of the symmetric and antisym-
metric collective modes.

At T�Tc, amplitude fluctuations of the order parameter
��r ,
� can be neglected, allowing to write ��r ,
�
=�0ei��r,
�, with a real constant �0 representing the BCS
mean-field gap energy. The phase field ��r ,
� can be ab-
sorbed by a unitary transformation of the fermionic field,21

�s,��r,
� → �s,�� �r,
� = �s,��r,
�ei��r,
�/2.

The derivation of the effective model proceeds with the
integration of the fermionic fields �a,�, and the expansion of
the resulting bosonic action around the saddle-point in terms
of derivatives of ��r ,
� and density fluctuations
��̃��r ,
� , ����r ,
� 	cf. Eqs. �A10� and �A11�
. This expan-
sion amounts to performing the RPA approximation of the
interacting problem.21,32

Then we integrate the auxiliary field ��̃��r ,
�, which in
the original representation of the density in terms of the
fields ��s�r ,
� , ��n�r ,
� yields

Seff =� drd

i

2
�
��r,
��s�r,
� +

1

2
� dr1dr2d
1d
2

� 	���r1,
1�D�r1 − r2,
1 − 
2� � ��r2,
2�

+ ��†�r1,
1��̂−1�r1 − r2,
1 − 
2����r2,
2�
 . �10�

In this expression, D�r ,
� is the phase stiffness of the super-
conductor 	cf. Eq. �A15�
, which physically measures the
tendency of the wire to have a uniform phase field ��r ,
�.
���r ,
� is the vector of densities,

���r,
� � ���s�r,
�
��n�r,
�

�
and �̂�r ,
� is the RPA density-response matrix, which char-
acterizes the response of the charge ���r ,
� due to an exter-
nal potential ��r ,
�: ���r ,
�=−�dr�d
��̂�r−r� ,

−
����r� ,
��, and contains all the information about screen-
ing and interaction between the superconductor and the elec-
tron gas 	cf. Eq. �A15�
.

The above action, Eq. �10�, is more conveniently ex-
pressed in Fourier space as

Seff =
1

2	V
�

k,�m

�m�
��k,�m��s�k,�m�

+ 	k2��k,�m�2D�k,�m�

+ �†�k,�m��̂−1�k,�m���k,�m�
 , �11�

where k is the momentum and �m= 2�m
	 the bosonic Matsub-

ara frequencies,32 and where the representation of the fields

��r,
� =
1

	V
�

k,�m

ei�k.r−�m
���k,�m� ,

��a�r,
� =
1

	V
�

k,�m

ei�k.r−�m
��a�k,�m� ,

has been used. In Fourier representation, the RPA density-
response matrix is compactly written as

�̂�k,�m� =
1

1 + �̂0�k,�m�V̂0�k�
�̂0�k,�m� , �12�

where

�̂0�k,�m� = ��0,s�k,�m� 0

0 �0,n�k,�m� � ,

V̂0�k� = �v�k,0� v�k,d�
v�k,d� v�k,0� � .

Here, the bare density-response functions �0,s�k ,�m� and
�0,n�k ,�m� 	cf. Eqs. �A12� and �A13�
 are obtained from the
Hamiltonians Hs

0 and Hn
0 	cf. Eqs. �3� and �4�, respectively
,

and v�k ,d� is the Fourier transform of v�r ,d� in Eq. �6�.
Note that at T=0 and in absence of quasiparticle excita-

tions, the whole electronic density in the superconductor cor-
responds to the superfluid density. Consequently, the field
��s�r ,
� physically represents the fluctuation of the Cooper-
pair density at point �r ,
�. An interesting aspect of the effec-
tive action in Eq. �10� is that the first term 	i.e., coupling
between the total density of Cooper pairs �s�r ,
� and the
phase field ��r ,
�
 appears naturally as a consequence of the
well-known number-phase commutation relation
	�s�r� ,��r��
= i��r−r�� occurring in the superconducting
ground state.21,33

The derivation of an effective model for the phase field
��r ,
� proceeds with the integration of the fields ��s�r ,
�
and ��n�r ,
�. When the superconductor is a very narrow
wire of radius r0��0, the dependence of the fields
��r ,
� , ��s�r ,
� on transverse dimensions can be neglected,
reducing to ���r ,
� ,��s�r ,
��→ ���x� ,��s�x�� where the
compact notation x��x ,
� has been used �here x is the co-
ordinate along the wire�. Is also convenient to define the
short-hand notation in Fourier representation q��k� ,−�m�
with k� the momentum parallel to the wire. Gaussian integra-
tion of the density fields ��s and ��n allows to obtain an
effective model in terms of the phase field � �i.e., “phase-
only” action� of the superconducting wire screened by an
effectively g-dimensional electron gas �g-DEG�,
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S�g�
w �

1

2	L
�
q
��m

2

4
�s

�g��q� + q2D�q����q�2, �13�

where �s
�g��q� is the RPA density-response function of the

superconducting wire

�s
�g��q� �

�0,s�q�
1 + �0,s�q�	v�1��k�,0� − veff

�g��q�

. �14�

Here v�1��k� ,d� is the 1D Fourier transform of the Coulomb
potential, Eq. �6�, �cutoff at short distances by the radius of
the wire r0�,11

v�1��k�,d� =
2e2

�r
K0�k��r0

2 + d2� �15�

with K0��� the zeroth-order Bessel function, which verifies
the limit lim�→0 K0���→−ln� �2 � �cf. Ref. 34�. The quantity
veff

�g��q� is an effective 1D �retarded� potential encoding all the
information about screening provided by the g-DEG,

veff
�g��q� �

1

L�
g−1�

k�

	v�g��k�,k�,d�
2�0,n
�g��q,k��

1 + �0,n
�g��q,k��v�g��k�,k�,0�

, �16�

where we have introduced the notation v�g��k� ,k� ,d� for the
g-dimensional Fourier transform of the Coulomb potential,
Eq. �6�, in which we have explicitly splitted the spatial de-
pendence into k� and k�, the �g−1�-dimensional momentum
perpendicular to the wire. Analogously, we have introduced
the notation �0,n

�g��q ,k�� for the density response function,
Eq. �A13�.

The minimization of the action S�g�
w 	cf. Eq. �13�
 allows to

obtain the equation of motion of the field ��q�, from which
the 1D plasma mode ��k�� can be obtained in the limit q
→0, upon analytical continuation to real frequencies i�m
→�+ i0+ �cf. Ref. 32�,

−
1

4
�s

�g��k�,� + i0+���k��2 + D0k�
2 = 0, �17�

where D0� limq→0 D�q�=
�s

�0�

4m �cf. Appendix B�.
Note that the same dispersion relation for the 1D plasmon

can be obtained using the equivalent transmission-line circuit
depicted in Fig. 2. In this phenomenological description,35

the dissipationless nature of the superconducting wire is rep-
resented by the kinetic inductance per unit of length �, while

the effective admittance per unit of length Z−1=Z−1�k� ,��
encodes all the capacitive and resistive effects arising from
the coupling to the metallic environment. These effective pa-
rameters are related to the microscopic theory by the rela-
tions,

� =
1

D0
, �18�

Z−1�k�,�� = −
i�

4
�s

�g��k�,� + i0+� . �19�

In addition to the contribution of soft modes, encoded in Eq.
�13�, 1D superconductors exhibit stable topological excita-
tions known as phase-slip excitations.33,36,37 A phase slip is a
region of size ��0 where the order parameter temporarily
vanishes, allowing the field ��x� to perform a jump of �2�n
�with n integer� across it, and can be understood as a vortex
in 1+1 dimensions. For wires in the limit of very low super-
conducting stiffness, phase slips are an important source of
momentum unbinding leading to finite resistivity for all tem-
peratures below Tc, and a relevant perturbation to the action
	in the renormalization-group �RG� sense
.11,12,38 Indeed, it is
believed that at T=0, the eventual destruction of the super-
conducting state in isolated ultrathin wires occurs through
the proliferation of quantum phase-slip/antiphase-slip
pairs,12,13,16–18,38–40 in what constitutes the quantum analog
in 1+1 dimensions to the classical Berezinskii-Kosterlitz-
Thouless �BKT� transition in 2D.41

Note that our derivation of Eq. �13� does not account for
the presence of phase slips. Consequently, our results will
only apply far from the BKT transition and far from the
�nonsuperconducting� phase where the effect of phase slips
dominates the low-energy properties. In the following we
analyze the generic action of Eq. �10� for the different cases
depicted in Fig. 1.

III. SCREENING REGIMES

A. Unscreened isolated wire

Let us first explore the instructive case of a superconduct-
ing wire ideally isolated from the environment. This situation
corresponds to the normal metal placed infinitely far from
the superconductor �i.e., d→��, which results in the decou-
pling of their dynamics 	i.e., veff

�g��q�→0 in Eq. �14�
. From
Eq. �14�, the RPA density response is

�s�q� =
�0,s�q�

1 + �0,s�q�v�1��k�,0�

→
k�→0

�2e2

�r
ln� 2

k�r0��−1

. �20�

Replacing this expression into Eq. �17� allows to obtain the
equation of motion for the Mooij-Schön plasma mode,10,11

�2�k�� − u2�k��k�
2 = 0 �21�

with u�k����8e2D0

�r
ln� 2

k�r0 � the �momentum-dependent� plas-
mon velocity.

L

Z
-1

LLL

Z
-1

Z
-1

Z
-1

FIG. 2. Equivalent transmission-line circuit representing the su-
perconducting wire capacitively coupled to the metallic environ-
ment. The kinetic inductance per unit of length � represents the
dissipationless superconducting nature of the wire while the effec-
tive admittance Z−1�Z−1�k� ,�� encodes all the capacitive and re-
sistive effects arising from the coupling to the environment �cf. Fig.
1�.
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Let us now concentrate on the superconducting properties
of the wire. It is well-known that long-range order of the
order parameter in 1D quantum systems is not possible, due
to presence of strong quantum fluctuations and, strictly
speaking, only quasi-long-range order, characterized by a
slowly decreasing order-parameter correlation function,

F�x� � ����x���0�� = �0
2e−�1/2��T
	��x� − ��0�
2�, �22�

can exist.11,42 In the case of the isolated wire, the phase-
correlation function calculated with the effective phase-only
action, Eq. �13�, and the response �s�q�, Eq. �20� writes11,43

�T
	��x� − ��0�
2� =
1

�K
�ln

�x2 + u0
2
2 ln 


r0
�3/2

, �23�

where we have defined the �short-range� Luttinger interac-
tion parameter K and the bare velocity u0 as11,43

K ��D0�r

8e2 , �24�

u0 ��D08e2

�r
. �25�

Compared to a 1D superconductor with short-range repulsive
interactions,11 the phase correlator of Eq. �23� yields a rela-
tively faster decrease in the order-parameter correlation func-
tion, Eq. �22�, as a consequence of the long-range Coulomb
interaction which is not completely screened in the 1D ge-
ometry. Consequently, density fluctuations are suppressed in
the limit q→0 �cf. Ref. 43�, and superconductivity, which
benefits from fluctuations in the density, is suppressed.

A natural step to take in order to diminish the detrimental
effects of the Coulomb interaction in the 1D geometry is to
screen it by the means of a metal placed nearby. This is the
subject of the subsequent sections.

B. Screening by a diffusive metallic wire

We now concentrate on the system depicted in Fig. 1�a�.
For simplicity, we consider the case of two geometrically
identical cylindrical wires �extensions to other 1D geom-
etries are straightforward�. In the following we assume that
the electron gas is only one-dimensional with respect to den-
sity fluctuations �n�q� with spatial wave vector k� satisfying
the condition k�r0�1. Note that this condition does not nec-
essarily imply that the normal wire is electronically 1D �i.e.,
it does not imply the existence of only one electronic con-
duction channel�. Indeed, in the rest of this section we as-
sume a normal metal with a large number of channels Nch
��kF,nr0�2�1. This fact, together with the additional as-

sumption of a very weak disorder potential, allows to neglect
Anderson-localization effects �i.e., L��wire, where �wire is
the localization length in the diffusive normal wire�.

In the following we focus on the experimentally relevant
regime d�r0�k�

−1. In that case v�1��k� ,0��v�1��k� ,d� and
therefore the RPA-density response, Eq. �14�, simplifies to

�s
�1��q� �

�0,s�q�	1 + �0,n
�1��q�v�k�,0�


1 + 	�0,s�q� + �0,n
�1��q�
v�k�,0�

. �26�

For a weakly disordered diffusive electron gas with elastic
mean-free path le and scattering time 
e= le /vF,n, where vF,n
is the Fermi velocity, the disorder-averaged density-response
function 	cf. Eq. �A13�
 at energies �m
e

−1 and momen-
tum q le

−1 writes44

�0,n
�1��q� � 2Nn,1D

0 Dk�
2

Dk�
2 + �m

, �27�

where Nn,1D
0 is the 1D density of states at the Fermi energy in

the normal metal and D= le
2 /
e is the diffusion constant in

1D. The factor 2 accounts for the spin degeneracy.
In Fig. 3 we have plotted the dispersion relation ��k�� vs

k� �thick solid line�, obtained from numerical evaluation of
Eq. �17�, using the response function, Eq. �26�, and the pa-
rameters of Table I, which correspond to typical experimen-

FIG. 3. Screening regimes for a superconducting wire screened
by a diffusive 1DEG. The curve �=Dk�

2 �dashed line� separates the
regime of static screening ��Dk�

2 �light gray area� from that of
dynamical screening ��Dk�

2 �white area�. The dispersion relation
of the 1D plasma mode �thick solid line� is obtained from the nu-
merical evaluation of Eq. �17�, using Eq. �26� and the parameters in
Table I. Note that the dispersion relation crosses over from the
static regime to the dynamical regime and eventually the plasmon
mode is completely damped. In the regime of frequencies �

�Dk�
2 2e2

�r
Nn,1D

0 ln 2
k�r0 �dark gray area� the unscreened Mooij-Schön

plasma mode is recovered �see inset�.

TABLE I. Parameters used in the calculations. Order-of-magnitude estimations of r0 and L have been extracted from experiments on
superconducting aluminum wires with coherence length estimated as �0�100 nm �cf. Ref. 18�.

r0�d
�nm�

L
��m�

D0

�kg−1 m−1�
Ns,1D

0 �Nn,1D
0

�m−1 J−1�
�0

�K�
D

�m2 s−1� �r

wfilm

�nm�
kTF

2D

�nm−1�
Nn,2D

0

�m2 J−1�

10 100 8.6�1035 1029 1 0.01 1 100 1 1038
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tal values.18 Note that because of the diffusive pole at q=0 in
the response function �0,n

�1��q� of the 1DEG 	cf. Eq. �27�
, the
behavior of the 1D plasmon �and therefore the superconduct-
ing properties of the wire� will crucially depend on the way
the limit q→0 in Eq. �17� is taken. As is evident from the
denominator in Eq. �27�, the energy scale �m=Dk�

2 sepa-
rates two distinct regimes of screening. If the energy of the
1D plasmon is such that ��k����m�Dk�

2, then the 1DEG
response is essentially static, and consequently we call this
the regime of “static” screening �light gray area in Fig. 3�.
Conversely, if ��k����m�Dk�

2 �white area in Fig. 3�, the
dynamical response of the 1DEG dominates the screening,
and therefore we refer to “dynamical” screening regime. In
the next sections we study in detail the behavior of the 1D
plasmon in these regimes.

1. Static screening limit �(k¸)™Dk¸
2

In this case, the response function in the normal metal 	cf.
Eq. �27�
 can be Taylor expanded in powers of the small
parameter

�m
Dk�

2 . Truncating the series at first order, we obtain

from Eq. �27� the expression �0,n
�1��q��2Nn

0�1−
�m
Dk�

2 �, and Eq.
�17� reads

− �2�k���1 + i
���k��

Dk�
2 � + u2k�

2 = 0, �28�

where we have defined the velocity of the statically screened
acoustic 1D plasmon,

u �� 4D0

�s
�1��0�

�29�

	compare to the momentum dependent u�k�� in Eq. �21�
. �
�

�0,s�0�
�0,s�0�+2Nn,1D

0 is a dimensionless parameter quantifying the
amount of dissipation induced by the coupling to the diffu-
sive 1DEG. Indeed, note that in the limit �→0, Eq. �28�
reproduces the linear dispersion relation of a 1D plasmon
with infinite lifetime, which corresponds to the normal mode
of a Luttinger-liquid action with short-range interactions11

�note that in this case, the screening length for the Coulomb
interactions is given by the distance d to the 1DEG�. In the
more general case, the term �i

���k��
Dk�

2 in Eq. �28� introduces a
small deviation from linearity, and more importantly, broad-
ening in the plasmon mode 	i.e., imaginary part in ��k��
.

In Fig. 4 we show the real and imaginary parts of ��k�� as
a function of k�, evaluated numerically directly from Eq. �17�
and for the parameters of Table I. The curve �=Dk�

2 is
shown as a reference. Note that while Re	��k��
 follows an
approximately linear dispersion relation in the regime ��k��
Dk�

2, the imaginary part takes a constant value �meaning
that the plasmon mode acquires a finite width�. This result
can be seen from Eq. �28� in the perturbative limit �→0,
where

��k�� � − Im	��k��
 �
�u2

2D
. �30�

2. Dynamical screening limit �(k¸)šDk¸
2

Note that while the 1D plasmon follows an approximately
linear dispersion relation �uk� 	cf. Eq. �28�
, the crossover
between the different regimes is �Dk�

2 	cf. Eq. �27�
. This
qualitative argument indicates that in the limit k�→0, dy-
namical screening will eventually dominate. For realistic es-
timates of the experimental parameters �cf. Table I�, our re-
sults indicate that the regime ��k���Dk�

2 �white area in Fig.
3� should be the most relevant in experimental studies on
today’s accessible wires.16–18

We note that if the condition

Dk�
2 � �m �

2e2

�r
Nn,1D

0 Dk�
2 ln� 2

k�r0
� , �31�

is fulfilled, then the response function, Eq. �26�, can be ap-
proximated as

�s
�1��q� � 2Nn,1D

0 Dk�
2

�m
.

This results indicates that in this regime �s
�1��q���n

�1��q� 	cf.
Eq. �27�
, which physically means that the superconductor
“inherits” the diffusive dynamics in the 1DEG through the
effect of the Coulomb interaction.

It is interesting to study the consequences on the action,
Eq. �13�, in this regime,

S�1�
w �

1

2	L
�
q
�1

2
Nn,1D

0 Dk�
2�m + D0k�

2���q�2. �32�

In this effective action, phase fluctuations show dissipative
dynamics �encoded in the term �k�

2�m� as a consequence of
the coupling to the dissipative processes in the 1DEG.

Note that a term �k�
2�m has been studied in the context

of resistively shunted Josephson junctions arrays.14,45,46 In
that case, the term �k�

2�m appears in addition to the dy-
namical term ��m

2 , which represents the effect of quantum
fluctuations induced by the charging energy of the supercon-

�D k�
2

Re�Ω�k���

�Im�Ω�k���

0.0001 0.0002 0.0003 0.0004
k� �nm

�1
�

0.5

1.0

1.5

2.0
Ω �GHz�

FIG. 4. �Color online� Real �solid line� and imaginary �dotted
line� components of the 1D plasma mode ��k��, obtained by nu-
merical evaluation of the equation of motion Eq. �17�, using Eq.
�26�. The real part �solid line� gives the dispersion relation while the
imaginary part �dotted line� represents the damping of the mode. As
in Fig. 3, the curves have been calculated for realistic experimental
parameters �cf. Table I�. The curve �=Dk�

2 �dashed line�, indicating
the crossover between the static and dynamical screening regimes,
is shown as a reference.
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ducting island.47 As a result, dissipation turns out to be ben-
eficial to superconductivity, through the quenching of phase
fluctuations.45

However, in our case, the form of the action in Eq. �32� is
qualitatively different since the term ��m

2 is absent �actually,
it is the dynamical term itself which becomes a contribution
�k�

2�m�. This has detrimental consequences for the super-
conductivity in the wire, as can be seen directly from the
equation of motion for the field �, Eq. �17�, which gives
��k���−i2D0 / �DNn,1D

0 �, indicating that the original plasma
mode is completely damped �i.e., purely imaginary contribu-
tion� and vanishes in the limit k�→0 �see Fig. 3�. Indeed,
expressing the action, Eq. �32�, in terms of the dual plasmon
field11 ��x�, defined as

��s�x� � −
1

�
� ��x� , �33�

we obtain the equivalent description,

S�1�
w �

1

2�2

1

	L
�
q
� �m

2Nn,1D
0 D

+
�m

2

4D0
���q�2,

which shows that the term �k�
2�m in Eq. �32� translates into

a relevant term ��m �in the RG sense� when expressed in
terms of the plasmon field ��q�. Another way to see this
detrimental effect is through the order-parameter correlation
function F�x� 	cf. Eq. �22�
, which vanishes due to the infra-
red divergence of the phase correlator for 
�0, i.e.,
�T
	��x ,
�−��0�
2�� 2

	L�q
1−cos k�x+�m


2Nn,1D
0 Dk�

2�m+D0k�
2 →�. For the par-

ticular case 
=0, the space-dependent correlator reads

�T
	��x,0� − ��0�
2� � C
x

Nn,1D
0 D

, �34�

where C�− 1
4�exp	

D0
0

2Nn,1D
0 D


 Ei�−
D0
0

2Nn,1D
0 D

� 	with Ei�z� the
exponential-integral function34
, meaning that the correlation
function decreases exponentially fast with distance F�x�
��0

2 exp	− Cx
Nn,1D

0 D

.

Only in the regime,

2e2

�r
Nn

0Dk�
2 ln

2

k�r0
� �m �35�

�cf. dark gray area and inset of Fig. 3�, and provided Eq. �27�
is still valid, or in the limit of very low electronic density of
states in the 1DEG, we recover Eq. �21� describing again an
unscreened 1D plasma mode.10 Physically, at such high fre-
quencies the response �0,n

�1��q� of the 1DEG vanishes and the
superconducting wire is effectively unscreened.

C. Screening by a diffusive metallic film

Now we focus our attention on the system of Fig. 1�b�,
which represents a superconducting wire coupled to a normal
diffusive film of width wfilm. In this case, the presence of the
superconducting wire breaks the translational symmetry in
the direction perpendicular to the wire. Consequently, the
perpendicular momentum k� in the plane is not conserved
and the Coulomb interaction 	compare to Eq. �15�
,

v�2��k�,k�,d� =
2�e2

�r

e−�k�
2+k�

2 d

�k�
2 + k�

2
�36�

couples the density modes in the wire �s�q� with momentum
k� to all the modes in the plane �n�q ,k�� with momentum k�.

In this case, the response function in the normal metal at
low energies writes44

�0,n
�2��q,k�� � 2Nn,2D

0 D�k�
2 + k�

2 �
D�k�

2 + k�
2 � + �m

, �37�

where Nn,2D
0 is the 2D density of states at the Fermi energy in

the normal metal. Here again, we neglect Anderson-
localization effects in the metal by assuming that the length
of the wire is L��film, where �film is the localization length
in the film.

We concentrate on the effective 1D potential veff
�2��q� en-

coding the screening properties of the diffusive film is 	cf.
Eq. �16�


veff
�2��q� �

1

L�
�
k�

	v�2��k�,k�,d�
2�0,n
�2��q,k��

1 + v�2��k�,k�,0��0,n
�2��q,k��

=
2e2

�r

DkTF

2
� dk�e−2�k�

2+k�
2 d

�
1

D�k�
2 + k�

2 � + DkTF
�k�

2 + k�
2 + �m

, �38�

where we have defined the 2D Thomas-Fermi wave vector,

kTF �
4�e2Nn,2D

0

�r
.

This quantity defines the 2D Thomas-Fermi screening length
�TF

2D= 2�
kTF

, beyond which the Coulomb potential is completely
screened.32

As in Sec. III B, the way in which the limit q→0 is taken
in Eq. �38� determines the screening regime provided by the
2DEG, and the behavior of the 1D plasmon. Again, two dis-
tinct regimes appear, although in this case the 1D plasmon
energy ��k�� is to be compared to the energy scale DkTFk�
�rather than Dk�

2� as is evident from the denominator in Eq.
�38�. The case ��k���DkTFk� corresponds to the static
screening regime while ��k���DkTFk� is the dynamical
screening regime.

1. Static screening limit �(k¸)™DkTF�k¸�

This region corresponds to the gray area in Fig. 5. In this
regime, the integrand of the effective potential veff

�2��q�, Eq.
�38�, can be Taylor expanded in powers of �m / 	D�k�

2+k�
2 �

+DkTF
�k�

2+k�
2 
, and in the experimentally relevant limit

kTFd�1, this expression reduces to

veff
�2��q� �

2e2

�r
�K0�2k�d� −

�

2

�m
DkTFk�

� �39�

with K0�z� the zeroth-order modified Bessel function.34

When replaced into Eq. �13�, the effective potential, Eq. �39�,
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contributes a term ��m3 /k� �which is marginally relevant in
the RG sense� to the effective action, and has the effect of
renormalizing the bare parameters in a Luttinger-liquid
description.48 The first and second terms in Eq. �39� are,
respectively, consistent with the static and dissipative contri-
butions to the effective screened interaction, obtained for a
Tomonaga-Luttinger liquid electrostatically coupled to a dif-
fusive 2DEG �cf. Ref. 24�. The static screening provided by
the 2DEG 	first term in Eq. �39�
 cuts the logarithmic diver-
gence of the bare intrawire Coulomb interaction v�1��k� ,0� in
Eq. �15�. The relation between the second term in Eq. �39�
and the dissipative contribution �k��m in Ref. 24 can be
made explicit with the introduction of the plasmon field
��x�, defined in Eq. �33�.

In the limit k�→0 	with ��k���DkTFk�
, the form of the
effective potential, Eq. �39�, can be further simplified to

veff
�2��q�� 2e2

 r
	ln� 1

k�d
�− �

2
�m

DkTFk� 
, and when replaced in Eq. �14�
yields

�s
�2��q� �

�0,s�0�

1 + �0,s�0�
2e2

�r
�ln�2d

r0
� +

�

2

�m
DkTFk�

� . �40�

From Eq. �17� we obtain the equation of motion for the 1D
plasmon,

− �2�k�� + i
2e2

�r

2��s
�2��0�

DkTF

�3�k��
k�

+ u2k�
2 = 0, �41�

where

u =� 4D0

�s
�2��0�

is the velocity of the statically screened plasmon 	note the
similarity with Eq. �29�
. Equation �41� describes a 1D
plasma mode with approximately linear dispersion relation
and width,

��k�� = − Im	��k��
 �
�e2D0

2�rDkTF�s,0�0�
k� . �42�

In Fig. 5 we show �solid line� the dispersion relation ob-
tained from Eq. �41� 	i.e., real component of ��k��
 for the
parameters in Table I. The light-gray area represents the re-
gime of static screening �note that we have multiplied the
curve �=DkTFk� by a factor 1

20 in order to visualize better
our results�. For the parameters of Table I, the estimated
plasmon velocity is u�105 m s−1�DkTF�107 m s−1,
which indicates that the static screening regime is the most
relevant one in the limit k�→0. For completeness, in Fig. 6
we show both the real and imaginary components of ��k��.
From Eq. �42�, we obtain that the width of the plasmon de-
pends linearly on k�.

Note that in the limit D→� �no dissipation in the normal
metallic film�, the solution of Eq. �41� corresponds to an
infinitely long-lived plasma mode with linear dispersion
relation.11 Accordingly, Eq. �13� reduces to the action of a
Tomonaga-Luttinger liquid with short-range interactions.11

2. Dynamical screening limit �(k¸)šDkTF�k¸�

If the screening properties of the 2DEG are poor �i.e., low
values of the electronic density and diffusion constant�, it
may occur that the condition of static screening ��k��
�DkTFk� is not fulfilled, and consequently the approxima-
tion, Eq. �39�, does not apply. We therefore need to explore
the regime of plasmon frequencies ��k���DkTFk�. In this
regime �white area in Fig. 5�, the effective potential veff

�2��q� in
Eq. �38� can be approximated as

veff
�2��q� �

2e2

�r
� f�2kTFd� − f�2�md

DkTF
�� ,

where we have defined f�z��−ez Ei�−z� with Ei�x� the
exponential-integral function.34 If the additional condition
�m�

DkTF

d holds, the effective potential can be further sim-
plified to

Dynamical screening

Static screening

�x 1�20��DkTFk�

0.0001 0.0002 0.0003 0.0004
k��nm

�1
�

50

100

150

200
Ω �G Hz�

FIG. 5. Screening regimes for a superconducting wire capaci-
tively coupled to a diffusive 2DEG. The dispersion relation �solid
line� results from Eq. �41�, valid in the regime ��k���DkTFk�. The
dashed line �=DkTFk� separates the regime of static �light gray
area� from that of dynamic �white area� screening. The parameters
used in the calculations are shown in Table I.

�x 1�20��DkTFk�

Re�Ω�k���

�Im�Ω�k��� �x10�

0.0001 0.0002 0.0003 0.0004
k� �nm

�1
�

10

20

30

40

50
Ω �GHz�

FIG. 6. �Color online� Real and imaginary components of the
1D plasma mode ��k��, obtained by numerical evaluation of the
equation of motion Eq. �41�, valid in the regime ��k���DkTFk�.
The blue dashed line �=DkTFk� separates the regime of static �light
gray area� from that of dynamic �white area� screening. The param-
eters used in the calculations are in Table I.
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veff
�2��q� �

2e2

�r
ln�2d�m

DkTF
� . �43�

Using this expression, the response function, Eq. �14�, reads

�s
�2��q� �

�0,s�0�

1 +
2e2

�r
�0,s�0�ln� DkTF

dr0k��m�
, �44�

which results in the equation of motion obtained from Eq.
�17� �in the limit q→0�,

− ��k��2 + u0
2k�

2�ln� DkTF

dr0k���k��
� + i

�

2
� = 0 �45�

with u0 defined in Eq. �25�. As in the unscreened case of Sec.
III A, the presence of the logarithm is an indication that the
2DEG fails to screen completely the Coulomb interaction.
Contrarily to the case studied in Sec. III B, the resulting
plasma mode is not damped in the limit k�→0, i.e., a disper-
sive real component survives. From Eq. �45� it is possible to
show that in the limit k�→0,

Re	��k��
 � u0k��ln� DkTF

dr0u0k�
2� , �46�

Im	��k��
 � −
�

4

u0k�

�ln� DkTF

dr0u0k�
2� , �47�

meaning that the width of the 1D plasma mode decreases at
low energies, resulting again in a well-defined excitation.
Note the difference with respect to the screening provided by
a 1DEG, where the damping of the plasmon is complete in
the limit k�→0. The origin of this difference lies in the ad-
ditional degree of freedom k� �momentum perpendicular to
the wire�, which smears �upon integration� the dependence
on the damping factor �m in the susceptibility 	cf. Eq. �38�
.

In the regime of frequencies
DkTF

d � �m�DkTF
2 , the effec-

tive potential veff
�2��q� can be approximated as

veff
�2��q� �

2e2

�r

1

2kTFd
�1 −

DkTF
2

�m �
and the response function is

�0,s
�2��q� �

�0,s�0�

1 +
2e2

�r
�0,s�0��ln� 2

k�r0
� +

DkTF

2d�m�
. �48�

In this limit, the equation of motion of the field ��q� is

− �2�k�� + u0
2k�

2�ln� 2

k�r0
� +

iDkTF

2d��k��
� = 0.

Note that in this regime, the dissipative effects are weaker
and the dispersion relation resembles that of the �unscreened�
Mooij-Schön mode, Eq. �21�. Eventually in the limit �m
�DkTF

2 , the response �0,n
�2��q� of the 2DEG vanishes and the

wire is effectively in the unscreened regime where the
Mooij-Schön plasma mode of Eq. �21� is fully recovered.

However, for the parameters of Table I and in the limit k�

→0, we have not found solutions consistent with the condi-
tion ��k���DkTFk�, and therefore conclude that only the
static screening regime is relevant.

IV. DISSIPATIVE EFFECTS IN THE DYNAMIC
CONDUCTIVITY

In this section we study the consequences of the dissipa-
tive effects on the dynamic conductivity of the wire ��k� ,��,
i.e., the ratio between the current density and the local elec-
tric field j�k� ,��=��k� ,��E�k� ,��. This quantity is of inter-
est because its real part Re	��k� ,��
 provides information on
the absorption properties and dissipation, which results from
the coupling to the diffusive modes in the electron gas.49

The response of the system to an external electromagnetic
field can be obtained by the means of the minimal coupling
−i� →−i�− e

cA in the microscopic Hamiltonian �3�. For a
superconducting wire at T=0 and in absence of quasiparticle
excitations, the total current density is given by

j�x� = jp�x� + jd�x� , .

jp�x� =
2e

c
D0 � ��x� ,

jd�x� = − �2e

c
�2

D0A�x� ,

where jp and jd are, respectively, the paramagnetic and dia-
magnetic contributions to the current density. The linear re-
sponse to an applied electromagnetic field is given by the
current-current susceptibility of the wire,

� j j�q� =� � ln Z

�Aq�A−q
�

A=0
= �jp�q�jp�− q�� − D0�2e

c
�2

.

Defining the quantity ��q�=−
� j j�q�
�m

, the conductivity is ob-
tained upon analytical continuation to real frequencies11,32

��k� ,��=��q�i�m→�+i�. In terms of the phase field ��q�, the
conductivity reads

��q� � − �2e

c
�2�−

D0

�m
+

D0
2k�

2

�m
���q���− q��� . �49�

Let us first study the response of an ideally isolated wire �cf.
Sec. III A� to the electromagnetic field. At T=0 we obtain

Re	��k�,��
 =
�

2
D0�2e

c
�2

�	� − ��k��
 , �50�

where ��k��=�8e2D0

�r
ln� 2

k�r0 �k�
2 is the energy of the Mooij-

Schön plasmon 	cf. Eq. �21�
. The real part of the conductiv-
ity tells us that the system absorbs energy at the frequency
�=��k��, which in this case are well-defined excitations �i.e.,
delta functions�. Note that in the limit k�→0, Eq. �50� allows
to recover the Drude peak at �=0, which is expected for a
superconductor.11,32

Let us now consider the case of a wire in the proximity to
a g-DEG. Using the action, Eq. �13�, to evaluate the formula

DISSIPATIVE PHASE FLUCTUATIONS IN… PHYSICAL REVIEW B 82, 104517 �2010�

104517-9



of the conductivity, Eq. �49�, we obtain the expression �valid
at T=0�

Re	��k�,��
 = D0
2�2e

c
�2k�

2

�

�Im�k�
2D0 −

�� + i0+�2

4
�s,ret

�g� �k�,���−1

,

�51�

where �s,ret
�g� �k� ,��� lim�→0+	�s

�g��q�
i�m→�+i�.
We first study the case of screening by a diffusive 1DEG

�cf. Sec. III B 2�, where the effects of dissipation are at their
strongest. We concentrate here only on the experimentally
relevant regime, Eq. �31�, and do not consider the regime,
Eq. �35�, relevant, in principle, for much longer wires. In
Fig. 7 we show the result for Re	��k� ,��
 of Eq. �51� as a
function of k� and �. In the bottom �k� ,�� plane, we show
the dispersion relation Re	��k��
 vs k� �thick solid line�, cor-
responding to the same plot of Fig. 3. As mentioned before,
the absorption peaks of Re	��k� ,��
 are centered at the fre-
quency Re	��k��
 of the plasma mode. The curve Dk�

2

�dashed line� is also plotted in the bottom �k� ,�� plane in
order to visualize the different screening regimes. Note that
the dissipative effects in the normal wire �encoded in a finite
value of the diffusion constant D� are manifested in this fig-
ure through the finite width ��k���−Im	��k��
 of the plas-
mon peaks. Note in addition that the constant width ��k�� in
the regime ��k���Dk�

2 is consistent with the result for
Im	��k��
 of Fig. 4.

As k�→0, the plasmon peak merges smoothly into the
dc-conductivity value �dc= � 2e

c �22DNn,1D
0 , which exactly cor-

responds to the dc conductivity of the 1DEG �cf. Fig. 8�.
Physically, this means that the dissipative processes in the
1DEG are transferred to the superconductor via the Coulomb
interaction. It also indicates that the original plasma mode is
no longer a well-defined excitation of the system, and that
the electromagnetic environment has profound consequences
in the excitation spectrum of the 1D superconductor.

As we mentioned before, far from the BKT quantum criti-
cal point, phase slips are an irrelevant perturbation �in the
RG sense�. In the case of Luttinger liquids with short-range

interactions, the perturbative effect of phase slips generates a
power-law resistivity ��T�, with � a positive exponent.38

Although we have neglected the perturbative effect of topo-
logical excitations in our formalism, the fact that a finite
resistivity at T=0 appears in the superconducting wire indi-
cates that their effect in the conductivity might be negligible
as compared to those induced by dissipation in the electron
gas discussed here.

In the case of screening by a diffusive 2DEG, our main
results are presented in Fig. 9. Contrarily to the case of Fig.
7, the plasmon peaks centered at Re	��k��
 are better de-
fined, and their width eventually vanish in the limit k�→0, in
agreement with Eq. �42� and Fig. 6. Eventually, the plasmon
peak merges into the superconducting Drude peak at �=0.

The presence of an additional degree of freedom �i.e.,
momentum k� in the plane perpendicular to the wire� is of
central importance to understand the vanishing of dissipa-
tion. Indeed, even in the dynamical screening regime �m
�DkTFk� for which one would naively think that dissipation
effects are dominant, the existence of a wave vector k� sat-
isfying the condition �m�Dk�

2 makes the dissipative pro-
cesses less important. Note in addition that this condition is

Re�Σ�k�,Ω��

k� Ω

FIG. 7. Dynamic conductivity Re ��k� ,�� of a superconducting
wire dynamically screened by a diffusive 1DEG. The plasma mode,
which is better defined at high energy and momentum becomes
completely damped in the limit �� ,k��→0 by the effects of the
dissipative environment.

2 4 6 8 10

Ω

Ω0

0.2

0.4

0.6

0.8

1.0

Re �Σ �k��0,Ω��Σdc�

FIG. 8. �Color online� dc conductivity ����=Re	��k�→0,��

of a superconducting wire screened by a diffusive 1DEG. The val-
ues on the axis are normalized to �dc=���=0�= � 2e

c �22DNn,1D
0 and

�0�
D0

2Nn,1D
0 D

. The plasma mode is completely damped in the limit
k�→0 �cf. Fig. 7� and the wire presents finite resistivity.

ReΣ�k�,Ω�

k� Ω

FIG. 9. Dynamic conductivity Re	��k� ,��
 of a superconduct-
ing wire dynamically screened by a diffusive 2DEG. The plasma
mode is worse defined at high energy and momentum but in the
limit �� ,k��→0 the effects of dissipation vanish.
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more easily satisfied in the limit �m→0. These qualitative
phase-space considerations allow to understand the behavior
of the effective 1D potential veff

�2��q� of Eq. �43�, which has a
weaker �i.e., logarithmic� dependence on the term �m en-
coding the dissipation. The net result is that the 1D plasma
modes are better defined in the limit k�→0 and frictional
effects vanish.

V. DISCUSSION AND SUMMARY

In this paper we have studied the effects of the local elec-
tromagnetic environment, provided by the presence of a non-
interacting electron gas, on the low-energy physics of a su-
perconducting wire. In particular, we have focused on the
derivation of an effective phase-only action, starting from the
microscopic Hamiltonian of the system. Using the path-
integral formalism, we decouple the superconducting and
Coulomb interactions by the means of Hubbard-Stratonovich
fields, and expand the resulting action in terms of Gaussian
fluctuations around the saddle point. This treatment is
equivalent to performing the so-called RPA approximation of
the interacting problem.32 We have studied two particular
cases, namely, the screening provided by �a� a diffusive
1DEG, and �b� a diffusive 2DEG, both placed at a distance
d�r0 from the wire. This would be the relevant situation in
practical realizations in, e.g., superconductor/normal hetero-
structures made by the means of the ferroelectric field effect
in Nb-doped SrTiO3 layers50 or in electrically controlled
LaAlO3 /SrTiO3 interfaces.51,52

It is of interest to put our results in the context of other
works dealing with electrostatically coupled 1D systems.
Among these, the Coulomb drag effect,53 where a finite cur-
rent I1 is driven in one �the “active”� system, and a finite
voltage V2 is induced in the other �“passive” system�, has
received a great deal of attention both theoretically54–58 and
experimentally.59–61 Rather than dealing with out-of-
equilibrium transport properties, inherent to the Coulomb
drag effect, here we have concentrated on equilibrium prop-
erties of the wire and on the behavior of the 1D plasma
mode.

From the theoretical point of view, our work differs from
the usual Tomonaga-Luttinger-liquid description of a purely
1D �i.e., one electronic conduction channel� conductor,
where the main mechanism of momentum decay is
backscattering.24,56–58 Indeed, it is worth to note that back-
scattering effects are absent in clean wires with a large num-
ber of electronic channels, and this fact is correctly repro-
duced by our effective coarse-grained theory 	cf. Eq. �13�
.
Therefore, in the language of Tomonaga-Luttinger-liquid
physics, our treatment amounts to retaining only forward-
scattering processes.

Our results point toward a rich behavior of the 1D plasma
mode in the wire, determined by the screening properties of
the diffusive electron gas. Independently of its dimensional-
ity, in the static screening limit, the plasmon follows approxi-
mately a linear dispersion relation. One could naively think
that in that regime dissipative effects are always negligible.
However, the complete solutions of Eqs. �28� and �41� indi-
cate that this is not the case. Indeed, we obtain sizable dis-

sipative effects even in the limit ��k���Dk�
2, in the presence

of a 1DEG 	��k���DkTFk� for a 2DEG
, which are manifest
in the broadening of the 1D plasmon mode �cf. Figs. 7 and
9�. We have derived Eqs. �30� and �42�, which relate the
width of the plasmon to the diffusive properties of the elec-
tron gas �i.e., the diffusion constant D�. Although technically
challenging from the experimental point of view, this broad-
ening could be seen in experiments of resonant inelastic Ra-
man light-scattering62 or in optical measurements of the dy-
namical conductivity or the reflection coefficient.63

On the other hand, our results indicate that in the dynami-
cal regime, the dimensionality of the electron gas is of cen-
tral importance to determine the behavior of the 1D plasmon,
and determines the superconducting properties at low energy.
If the screening is provided by a 1DEG, its dissipative pro-
cesses are more efficiently transferred to the superconducting
wire in the limit k�→0. As a consequence, the plasma mode
becomes an ill-defined excitation and the superconductor
shows a finite dc conductivity in the limit �=0 �cf. Figs. 7
and 8�. This effect could be seen, e.g., in dc-transport experi-
ments on capacitively coupled superconducting/normal wires
systems �cf. Fig. 8�. More importantly, our results indicate
that in the case of proximity to a 1DEG, the dynamical
screening regime, Eq. �31�, should be the most relevant for
experimental realizations �cf. Figs. 3 and 5�. This is more or
less evident from the fact that the plasma mode essentially
follows a linear dispersion in the limit k�→0 while the
boundary between the dynamical and the static screening
regimes �determined by the diffusive modes in the electron
gas� is �Dk�

2.
When the screening is provided by a 2DEG, acoustic

plasma modes with a vanishing width are recovered in the
limit k�→0. The reason for this lies in the existence of the
additional degree of freedom in the electron gas �perpendicu-
lar momentum k��, which produces �upon integration� a
weakening of dissipation effects. At this point it is tempting
to speculate that a semi-infinite three-dimensional �3D�
metal, or a superconducting wire embedded in a 3D normal
matrix, would provide an additional degree of freedom �mo-
mentum k�� perpendicular to k� and k��, and would weaken
further the impact of dissipation in the metal.

These remarks are relevant to works suggesting the pos-
sibility to stabilize the superconductivity in 1D systems by
coupling them to a bath of normal quasiparticles.13,25,26 In
these works, the basic underlying physical idea is that the
normal bath provides a source of friction for the phase field
��x� which tends to quench its fluctuations and therefore, to
favor superconductivity �very much like in the case of a re-
sistively shunted Josephson junction2–4�. However, little at-
tention has been given up to now to the simultaneous dissi-
pative effects induced by the Coulomb interaction with the
electrons in the metal, which produce friction in the dual
field ��s�x�, and therefore tends to increase phase fluctua-
tions, deteriorating the superconducting properties. In that
sense, our results show that the best condition would be to
screen the Coulomb interaction with a clean �i.e., large dif-
fusion constant D� metallic film �rather than a wire�. This
result lends credence to the analysis made in Ref. 26, where
it was assumed that the Coulomb interactions only renormal-
ize the bare Luttinger parameters of a superconducting wire
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in contact with a 2D normal diffusive metal system.
Many other issues remain to be addressed to get an accu-

rate physical description of a superconducting wire coupled
to a dissipative electron gas, such as the aforementioned ef-
fect of topological excitations,12 Anderson localization ef-
fects in the electron gas as a consequence of disorder, simul-
taneous effect of Coulomb interactions and Andreev
tunneling, etc. We expect that our results inspire other works
along these lines.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
ACTION

Although the derivation of the low-energy action for a
superconductor has been studied by several authors,12,21,29,30

here we follow more closely the derivation of De Palo et
al.21 Our starting point is the decoupling of the interaction
terms appearing in Hs

0 and Hint 	Eqs. �3� and �8�, respec-
tively
 by the means of HS transformations �HSTs�,

e−�d
Hint�
� !� �
�

D	�̃�
e−�1/2� �
�=�

�d4x�d4x�� 	v��x� − x�� �
−1

��̃��x���̃��x�� �+i�d4x��̂��x���̃��x��, �A1�

eU�drd
�s,↑
� �s,↓

� �s,↓�s,↑ !� D	��,�
e−�d4x����x��2/U�+�d4x��
��x���s,↓�x���s,↑�x��+�s,↑

� �x���s,↓
� �x����x��, �A2�

where we have introduced the notation x�= �r ,
� and the
bosonic fields �̃��x�� , ���x�� , ��x��. The quantity 	v��x�
−x�� �
−1 is a compact notation for the Fourier transform,

	v��x� − x�� �
−1 =
1

	�
�
k�

eik��x�−x�� �

v��k��
, �A3�

where v��k��=�d4x�e−ik��x�−x�� �v��x�−x�� � with v��x�−x�� �
the potential v��x�−x�� ��v��r−r����
−
��. Note that the
mode k�=0, for which the above HST is formally ill defined,
can be safely ignored by considering the interaction with the
positive ionic background in the system �not explicitly writ-
ten here�.

Our next step is to decouple the quadratic term
�̃��x���̃��x

��
� in Eq. �A1� by the means of an extra HST.

According to Ref. 21, this has the advantage of introducing
the physical densities �symmetric and antisymmetric� of the
problem 	cf. Eq. �7�
. Then,

e−�1/2��d4x�d4x�� 	v��x� − x�� �
−1�̃��x���̃��x�� �

!� D	��
e−�1/2��d4x�d4x�����x��v��x�−x�� ����x�� �−i�d4x��̃��x�����x��.

�A4�

Note that the formal integration of the field �̃� gives the
functional-delta function31 �	�̂�−��
. This fact allows to in-
terpret the HS fields �� as the physical electronic densities.21

It is convenient to write the action of the system after
these manipulations,

S =� d4x��
�
��s,�

� ��
 − �s��s,� +
1

2m
	��s,�

� 
	��s,�
�
+� d4x�� ��x��2

U
− ���x���s,↓�s,↑ − �s,↑

� �s,↓
� ��x���

+� dx��
�
��n,�

� ��
 − �n + Vi��n,� +
1

2m
	��n,�

� 


�	��n,�
� +
1

2 �
�=�

� d4x�d4x�����x��v��x� − x�� ����x�� �

+ i �
�=�

� d4x��̃��x��	���x�� − �̂��x��
 , �A5�

where for simplicity we have dropped the arguments in the
fermionic fields �s,� and �n,� and in the disorder potential
Vi=Vi�r�.

The next step is to perform the saddle-point approxima-
tion with respect to the bosonic fields
��x�� , ���x�� , �̃��x�� , ���x��, which gives the equations,

�S

����x��
= 0 =

��x��
U

− �s,↓�x���s,↑�x�� , �A6�

�S

���x��
= 0 =

���x��
U

− �s,↑
� �x���s,↓

� �x�� , �A7�

�S

��̃��x��
= 0 = ���x�� − �̂��x�� , �A8�

ALEJANDRO M. LOBOS AND THIERRY GIAMARCHI PHYSICAL REVIEW B 82, 104517 �2010�

104517-12



�S

����x��
= 0 =� dx��v��x� − x�� ����x�� � + i�̃��x�� . �A9�

The first two equations reproduce the well-known BCS gap
equation33 while the other two give the relationship between
�� , �̃� and the electronic density. These equations provide
the starting point for a controlled expansion in terms of
Gaussian fluctuations of the bosonic fields around the uni-
form solutions ��0�, ��

�0�, and �̃�
�0�. In what follows, we as-

sume that the values of ��0�, ��
�0�, and �̃�

�0� are known. When
these solutions are inserted back into the action, Eq. �A5�, we
notice that the quantity �̃�

�0�= i��
�0��d4x�v��x�� can be ab-

sorbed in a renormalization of the chemical potential �� due
to the effect of Coulomb interactions, while the divergent
quantity 1

2��=����
�0��2�d4x�d4x��v��x�−x�� � exactly cancels

the contribution coming from the positive ionic background
�which we have not written explicitly here�, by imposing the
overall electroneutrality of the system, and consequently we
will drop it in the following. We also drop the constant term

	�
�0

2

U , where � is the volume of the superconducting sys-
tem.

At sufficiently low energies, amplitude fluctuations of the
order parameter can be neglected, and we can write ��x��
=�0ei��x��, with a real constant �0= ��0�. We can absorb the
phase field by the means of a transformation of the fermion
field,

�s,��x�� → �s,�� �x�� = �s,��x��ei��x��/2.

The expression of the effective action is considerably simpli-
fied introducing the Nambu notation,

�s�x�� � ��s,↑�x��
�s,↓

� �x��
�, �n�x�� � ��n,↑�x��

�n,↓
� �x��

� ,

which allows to write the action as

S �� d4x���s
†	A0,s − �s
�s + �n

†	A0,n − �n
�n�

+
1

2�
�
� d4x�d4x������x��v��x� − x�� �����x�� �

+ i �
�=�

� d4x���̃��x��	��
�0� + ����x��
 ,

where

��̃��x�� � �̃��x�� − �̃�
�0�, �A10�

����x�� � ���x�� − ��
�0� �A11�

are the fluctuations of the density around the saddle-point
solutions, and

A0,s � ��
��̂0 − � �2

2m
+ �s��̂3 − �0�̂1,

�s � − � i��
��
2

+
����2

8m
− i�

�

��̃���̂3 +
i�����

2m
�̂0,

A0,n � ��
��̂0 − � �2

2m
+ �n��̂3,

�n � i�
�

�����̃��̂3,

where �̂i are the Pauli matrices and where we have used the

fact that i��	�� −�� 

2m = i���

m in a translationally invariant system.
The next step consists in using the expansion formula,

Tr ln	A0 − �
 = Tr ln A0 − �
n=1

�
�− 1�n

n
Tr	G0�
n,

where G0�−	A0
−1. Truncating the series at second order
�i.e., Gaussian fluctuations�, we obtain

S � − Tr	G0,s�s
 +
1

2
Tr	G0,s�s
2 − Tr	G0,n�n


+
1

2
Tr	G0,n�n
2 +

1

2�
�
� d4x�d4x������x��v��x�

− x�� �����x�� � + i �
�=�

� d4x���̃��x��	��
�0� + ����x��
 ,

where the propagators in Nambu space G0,s and G0,n write

G0,s = �g0,s�x�� f0,s�x��

f̄0,s�x�� ḡ0,s�x�� � ,

G0,n = �g0,n�x�� 0

0 ḡ0,n�x��
� ,

and where g0,s�x���−�T
�s,↑�x���s,↑
� �0�� and ḡ0,s�x��

��T
�s,↓
� �x���s,↓�0�� denote, respectively, the particle and

hole propagators in the superconductor, while f0,s�x��
��T
�s,↓�x���s,↑�0��, f̄0,s�x����T
�s,↑

� �x���s,↓
� �0�� are the

anomalous ones.64 Similarly g0,n�x���−�T
�n,↑�x���n,↑
� �0��

and ḡ0,n�x����T
�n,↓
� �x���n,↓�0�� are the particle and hole

propagators in the normal metal, respectively.
The evaluation of the traces yields

Tr	G0,s�s
 = − �s
�0�� d4x�� i

2
�
� +

����2

8m
− i�

�

��̃��
x�

,

Tr	G0,s�s
2 =� d4x�d4x����0,s�x� − x�� �

��1

2
�
� − �

�

��̃��
x�

�1

2
�
� − �

��

��̃���
x
��

− D��x� − x�� �	��
x�
	��
x

��� ,

Tr	G0,n�n
 = i�n
�0�� d4x���

�

�����̃��
x�

,
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Tr	G0,n�n
2 =� d4x�d4x���0,n�x� − x�� �

� ��
�

�����̃��
x�
��

��

������̃���
x
��

,

where for simplicity we have used the compact notation
	O
x�

�O�x��, and where we have defined

D��x� − x�� � �
1

2m2 	�g0,s�x�� − x�� � g0,s�x� − x�� �

+ �f0,s�x�� − x�� � f0,s�x� − x�� �


and the density-density correlation functions

�0,s�x� − x�� � � − �T
��s�x����s�x�� ��

=− 2g0,s�x� − x�� �g0,s�x�� − x��

+ 2f0,s�x� − x�� �f0,s�x�� − x�� , �A12�

�0,n�x� − x�� � � − �T
��n�x����n�x�� ��

=− 2g0,n�x� − x�� �g0,n�x�� − x�� . �A13�

The final step is to integrate out the modes ��̃��x��. To that
aim, we decouple the mixed term ����̃�����̃�̄�� appearing in
Tr	G0,s�s
2 and Tr	G0,n�n
2 by returning to the original rep-
resentation for the densities 	cf. Eq. �7�
,

��̃s =
��̃+ + ��̃−

2
,

��̃n =
��̃+ − ��̃−

2
,

and integrate out the fields ��̃n�x�� and ��̃s�x�� instead. From
here we see that the term ���
����
��� cancels, as in Ref. 21.
We finally obtain

S =
i

2
� d4x��
��x���s�x�� +� d4x�d4x���1

2
D�x�

− x�� � � ��x�� � ��x�� � + ��†�x���̂−1�x� − x�� ����x�� �� ,

�A14�

where we have defined

D�x�� �
�s

�0�

4m
��x�� − D��x�� ,

���x�� � ���s�x��
��n�x��

� ,

�̂−1�x�� � �	�0,s�x��
−1 0

0 	�0,n�x��
−1 � + ��
�

��v�x�,0� v�x�,d�
v�x�,d� v�x�,0�

� , �A15�

where the compact notation of Eq. �A3� has been used for
	�0,a�x��
−1.

APPENDIX B: DENSITY SUSCEPTIBILITY AND
SUPERCONDUCTING STIFFNESS IN THE LIMIT q	\0

From Eq. �A12�, the Fourier transforms reads

�0,s�q�� =
2

	�
�
k�

	− g0,s�k��g0,s�k� − q��

+ f0,s�k��f0,s�k − q��
 .

In the limit q�→0, we obtain

lim
q�→0

�0,s�q�� → −
2

�
�
k

1

	
�

n

�i�n�2 + �k
2 − �0

2

	�i�n�2 − Ek
2
2

= −
2

���
k

nF�Ek�
2Ek

−
nF�− Ek�

2Ek
�

with �k� k2

2m −�s and Ek���k
2 +�0

2. At T=0,

lim
q�→0

�0,s�q�� =
2

�
�
k

1

2Ek
=Ns

�0�" , �B1�

where "��−�D

�D d� 1
��2+�0

2 = ln	
�D+��D

2 +�0
2

−�D+��D
2 +�0

2 
�2 ln	
2�D

�0

, and

where �D is a high-energy cutoff.
Similarly, the Fourier transform of the superconducting

stiffness reads

D�q�� �
�s

�0�

4m
− D��q��

with
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D��q�� �
1

�
�
k�

− k · �k − q�
2m2

�	f�k��f�k� − q�� + g�k��g�k� − q��


=
1

V
�
k

− k · �k − q�
2m2

�
1

	
�

n

�0
2 + �i�n + �k��i�n − i�m + �k−q�

	�i�n�2 − Ek
2
	�i�n − i�m�2 − Ek−q

2 

.

Evaluating the Matsubara sum over the fermionic frequen-

cies i�n, we obtain the result in the limit q�→0,

lim
q�→0

D��q�� � −
1

V
�
k

k2

2m2

nF�Ek� − nF�Ek−q�
Ek − Ek−q

� −
1

V
�
k

k2

2m2

�nF�Ek�
�Ek

,

which vanishes in the limit T→0, and we recover the well-
know result,33,64

lim
q�→0

D�q�� � D0 =
�s

�0�

4m
.
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